B.Sc. DEGREE PROGRAMME IN CHEMISTRY

(CBCSSUG 2019)

UNDER CHOICE BASED CREDIT AND SEMESTER SYSTEM

PROGRAMME OUTCOMES & COURSE OUTCOMES 2019 ADMISSION ONWARDS

PROGRAMME OUTCOMES

- Understand basic facts and concepts in chemistry.
- Apply the principles of chemistry.
- Appreciate the achievements in chemistry and to know the role of chemistry in nature and in society.
- Familiarize with the emerging areas of chemistry and their applications in various spheres of chemical sciences and to apprise the students of its relevance in future studies.
- Develop skills in the proper handling of instruments and chemicals.
- Familiarize with the different processes used in industries and their applications.
- Develop an eco-friendly attitude by understanding the green methods adopted in chemistry
- Acquaint with the applications of chemistry in our day-to-day life.

SEMESTER I

Course Code: CHE1B01

Core Course I: Theoretical and Inorganic Chemistry- I

Total Hours: 32; Credits: 2; Hours/Week: 2; Total Marks 75 (Internal 15 & External 60)

CHE1B01	Theoretical and Inorganic	L*	T**	P***	$C^{\#}$
	Chemistry-I	2	0	0	2
Objective (s)	To gain detailed knowledge of the principle properties of s and p block elements. To provid a research project. Students will be able to an	le the	basic gr	oundwo	ork for
	base concept.	J		J	
Course outcon	ne (s)				
CO1	To apply the methods of a research project.				
CO2	To understand the principles behind volumetry.				
CO3	To analyse the characteristics of different eleme	nts.			
CO4	To distinguish between different acid base conce	epts.			
CO5	To analyse the stability of different nuclei.				

^{*}Lecture, **Tutorial, ***Practical, #Credit

SEMESTER II

Course Code: CHE2B02

Core Course II: Theoretical and Inorganic Chemistry- II

Total Hours: 32; Credits: 2; Hours/Week: 2; Total Marks 75 (Internal 15 & External 60)

CHE2B02	Theoretical and Inorganic Chemistry- II	L	Т	P	C				
		2	0	0	2				
Objective(s	Module I – To introduce the students to the failures of classical physics								
	theories in explaining many experiments and the	he eme	rgence	of qua	antum				
	theory with which all of them could be satisfactor	rily exp	olained.	Modul	e II –				
	To enablethe students to understand the the basic postulates of quantum								
	mechanics and how to solve the time-independent Schrödinger wave equation								
	of different systems including H atom. Module III - To introduce the								
	quantum mechanical treatment of chemical bond	ling in	diatom	ic mole	ecules				
	using VB and MO theories. Module IV - To int	troduce	the stu	idents 1	to the				
	quantum mechanical treatment of hybridisation a	and bor	nding in	ı polya	tomic				
	systems.								
Course ou	tcome (s)								
CO1	To understand the importance and the impact of qu	ıantum	revolut	ion in					
	science.								
CO2	To understand and apply the concept that the wave	function	ons of h	ydroge	n				
	atom are nothing but atomic orbitals.								

CO3	To understand that chemical bonding is the mixing of wave functions of the
	two combining atoms.
CO4	To understand the concept of hybridization as linear combination of orbitals
	of the same atom.
CO5	To inculcate an atomic/molecular level philosophy in the mind.

SEMESTER III

Course Code: CHE3B03

Core Course III: PHYSICAL CHEMISTRY - I

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

Total fronts. 10, crosses, 5, fronts, 17 cm. 5, from trains 70 (mornal for the Enternal co)								
CHE3B03	PHYSICAL CHEMISTRY - I	L	T	P	С			
		3	0	0	3			
Objective (s)	To introduce the concepts of chemical thermodynamics, equilibria and							
	group theory.							
Course outco	Course outcome (s)							
CO1	To understand the properties of gaseous state and	how it	links to)				
	thermodynamic systems.							
CO2	To understand the concepts of thermodynamics an	To understand the concepts of thermodynamics and it's relation to						
	statistical thermodynamics.							
CO3	To apply symmetry operations to categorize different molecules.							

SEMESTER IV

Course Code: CHE4B04

Core Course IV: ORGANIC CHEMISTRY-I

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE4B04	ORGANIC CHEMISTRY- I	L	T	P	С			
		3	0	0	3			
Objective (s)	To enable the students to analyse basic theory and concepts of organic							
	chemistry and appreciate different organic reaction mechanism and their							
	stereochemistry.							
Course outc	ome (s)							
CO1	To apply the concept of stereochemistry to differen	nt con	npounds	S.				
CO2	To understand the basic concepts of reaction mechanism.							
CO3	To analyse the mechanism of a chemical reaction.							
CO4	To analyse the stability of different aromatic syste	ms.						

Course Code: CHE4B05(P)

Core Course V: INORGANIC CHEMISTRY PRACTICAL - I

Total Hours: 128; Credits: 4; Hours/Week: 2 (I, II, III & IV Semesters); Total Marks 100 (Internal 20 & External 80)

CHE4B05 (P)	INORGANIC CHEMISTRY PRACTICAL – I	L	Т	P	С		
		0	0	2	4		
Objective (s)	To enable the students to gain skills in preparation of	of stan	dard so	lution	s		
	and quantitative volumetric analysis.						
Course outcome ((s)						
CO1	To enable the students to develop skills in quatitative	To enable the students to develop skills in quatitative analysis and					
	preparing inorganic complexes.						
CO2	To understand the principles behind quantitative and	alysis.					
CO3	To apply appropriate techniques of volumetric quan	ıtitativ	e analy	sis in			
	estimations.						
CO4	To analyse the strength of different solutions.						

SEMESTER V

Course Code: CHE5B06

Core Course VI: INORGANIC CHEMISTRY - III

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE5B06	INORGANIC CHEMISTRY – III	L	T	P	С			
		3	0	0	3			
Objective (s)	To enable the students to gain detailed known	nowledge of the chemistry of						
	different analytical principles and to develo	p con	icerns f	for env	ironment.			
	To give a basic understanding of different m	etallu	rgical p	process	es,			
	interhalogen compounds and inorganic polymers.							
Course outcome	e (s)							
CO1	To understand the principles behind qu	uanlita	ative a	and qu	antitative			
	analysis.							
CO2	To understand basic processes of metallurgy	and to	analy	se the n	nerits of			
	different alloys.							
CO3	To understand the applications of different ir	norgan	nic poly	mers.				
CO4	To analyse different polluting agents.							
CO5	To apply the principles of solid waste manag	emen	t.					

Course Code: CHE5B07

Core Course VII: ORGANIC CHEMISTRY - II

Total Hours: 64; Credits: 3; Hours/Week: 4; Total Marks 75 (Internal 15 & External 60)

CHE5B07	ORGANIC CHEMISTRY – II	L	T	P	С		
		4	0	0	3		
Objective (s)	To give the students a thorough knowledge about the chemistry of selected						
	functional groups and their applications in organic preparations.						
Course outc	ome (s)						
CO1	To understand the difference between alcohols and	l phen	ols.				
CO2	To understand the importance of ethers and epoxic	les.					
CO3	To apply organometallic compounds in the prepara	ation o	of differ	ent			
	functional groups.						
CO4	To apply different reagents for the inter conversion	n of al	dehyde	s,			
	carboxylic acids and acid derivatives.						
CO5	To apply active methylene compounds in organic	prepar	ations.				

SEMESTER V

Course Code: CHE5B08

Core Course VIII: PHYSICAL CHEMISTRY - II

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE5B08	PHYSICAL CHEMISTRY – II	L	T	P	С		
		3	0	0	3		
Objective (s)	To familiarise the students with the concepts of kinetics, catalysis and						
	photochemistry and to familiarize the applications of molecular						
	spectroscopy and phase equilibrium.						
Course outco	ome (s)						
CO1	To apply the concept of kinetics, catalysis and pho	toche	mistry t	o vario	us		
	chemical and physical processes.						
CO2	To characterise different molecules using spectral	metho	ds.				
CO3	To understand various phase transitions and its app	olicati	ons.				

SEMESTER VI

Course Code: CHE6B09

Core Course IX: INORGANIC CHEMISTRY – IV

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE6B09	INORGANIC CHEMISTRY – IV	L	T	P	С		
		3	0	0	3		
Objective (s)	To gain detailed knowledge of the electronic configuration and properties of						
	transition and inner transition elements and their role in biological systems.						
	To introduce the importance of different instruments used in analysis.						
Course outco	Course outcome (s)						
CO1	To understand the principles behind different instrumental methods.						
CO2	To distinguish between lanthanides and actinides.						

CO3	To appreciate the importance of CFT.
CO4	To understand the importance of metals in living systems.
CO5	To distinguish geometries of coordination compounds.

SEMESTER VI

Course Code: CHE6B10

Core Course X: ORGANIC CHEMISTRY - III

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE6B10	ORGANIC CHEMISTRY – III	L	T	P	С			
		3	0	0	3			
Objective(s)	To gain detailed knowledge of the chemistry of dis	To gain detailed knowledge of the chemistry of different bio molecules.						
	To provide a basic understanding of different spec	tral te	chnique	es and th	neir			
	application in simple molecules. To differentiate d	liverse	pericy	clic				
	reactions.							
Course outco	ome (s)							
CO1	To elucidate the structure of simple organic compo	ounds	using s	pectral				
	techniques.							
CO2	To understand the basic structure and tests for carb	ohyd	rates.					
CO3	To understand the basic components and importan	ce of	DNA.					
CO4	To understand the basic structure and applic	ations	of al	kaloids	and			
	terpenes.							
CO5	To distinguish different pericyclic reactions.							

SEMESTER VI

Course Code: CHE6B11

Core Course XI: PHYSICAL CHEMISTRY - III

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE6B11	PHYSICAL CHEMISTRY – III	L	T	P	С			
		3	0	0	3			
Objective (s)	To get a thorough knowledge of electrochemistry,	collig	ative pr	operties	s and			
	solid state.							
Course outco	me (s)							
CO1	To understand the basic concepts of electrochemis	try.						
CO2	To understand the importance of colligative prope	To understand the importance of colligative properties.						
CO3	To relate the properties of materials/solids to the g	To relate the properties of materials/solids to the geometrical properties and						
	chemical compositions.							

SEMESTER VI

Course Code: CHE6B12

Core Course XII: Advanced and Applied Chemistry

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE6B12	Advanced and Applied Chemistry	L	T	P	С		
		3	0	0	3		
Objective (s)	To initiate the students to the role and opportunities of chemistry as a						
	discipline in modern civilization.						
Course outcon	ne (s)						
CO1	To understand the importance of nanomaterials.	To understand the importance of nanomaterials.					
CO2	To appreciate the importance of green approach in	chemi	istry.				
CO3	To understand the uses and importance of computa	tional	calcula	itions i	n		
	molecular design.						
CO4	To understand the role of chemistry in human happ	iness	index a	nd life			
	expectancy.						

SEMESTER VI

Course Code: CHE6B13(E1)

Core Course XIII: Elective 1. INDUSTRIAL CHEMISTRY

Total Hours: 48; Credits: 2; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE6B13(E1)	INDUSTRIAL CHEMISTRY	L	T	P	С		
		3	0	0	2		
Objective (s)	To familiarise the students with the role and of	pport	unities	of chen	nistry		
	as a discipline in modern civilization. To crea	ite awa	areness	among	the		
	students about different chemical industries.						
Course outcome (s)						
CO1	To understand the importance of petrochemic	als.					
CO2	To appreciate the importance and to familiari	se the	opporti	unities	of		
	pharmaceutical, leather and sugar industries.						
CO3	To analyse the role of catalysts in industrial p	rocess	es.				

SEMESTER VI

Course Code: CHE6B13(E2)

Core Course XIII: Elective 2. POLYMER CHEMISTRY

Total Hours: 48; Credits: 2; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE6B13(E2)	POLYMER CHEMISTRY	L	T	P	C			
		3	0	0	2			
Objective (s)	To gain detailed knowledge about the classification of polymers and various mechanisms and technology adopted for polymerisation. To give a basic understanding of the properties of polymers like glass transition							
	temperature, molecular weight and degradation of polymers. To give a detailed idea about different commercial polymers.							
Course outcome	(s)							
CO1	To understand various classification of p polymerisation methods.	olyme	ers and	d type	s of			

CO2	To understand the important characteristics of polymers such as average
	molecular weight, glass transition temperature, viscoelasticity and
	degradation.
CO3	To appreciate the importance of processing techniques.
CO4	To characterise different commercial polymers and to understand the
	significance of recycling.

SEMESTER VI

Course Code: CHE6B13(E3)

Core Course XIII: Elective 3. MEDICINAL AND ENVIRONMENTAL CHEMISTRY

Total Hours: 48; Credits: 2; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE6B13(E3)	MEDICINAL AND ENVIRONMENTAL	L	Т	P	C			
	CHEMISTRY	3	0	0	2			
Objective (s)	To introduce the students to the importance of	f cher	nistry i	n medi	cinal			
	field and to get ideas about various diseases. To	help	the stu	dents t	o get			
	information about various toxic substances in en	information about various toxic substances in environment and their						
	control.	control.						
Course outcome	(s)							
CO1	To understand the importance of drugs in human	healt	h.					
CO2	To understand the facts about common diseases	and tr	eatmen	t.				
CO3	To identify the presence of toxic substances in a	tmosp	here.					
CO4	To apply chemistry in treatment of water and sev	To apply chemistry in treatment of water and sewage.						

SEMESTER VI

Course Code: CHE6B14(P)

Core Course XIV: PHYSICAL CHEMISTRY PRACTICAL

Total Hours: 80; Credits: 4; Hours/Week: 5 (Semester V); Total Marks 100 (Internal 20 & External 80)

CHE6B14(P)	PHYSICAL CHEMISTRY PRACTICAL	L	T	P	С
		0	0	5	4
Objective (s)	To familiarise the students with the relation bet	ween	physic	al prop	erties
	and chemical composition used for analysis. To	provi	de stud	lents an	idea
	of designing experimental methods to analyse t	he ph	ysical p	oroperti	es of
	molecules or materials.				
Course outcom	e (s)				
CO1	To enable the students to develop analytical skills	s in de	termini	ng the	
	physical properties (physical constants).				
CO2	To develop skill in setting up an experimental me	thod t	o deter	mine th	e
	physical properties.				
CO3	To understand the principles of Refractome	etry, P	otentio	metry a	and
	Conductometry.				

SEMESTER VI

Course Code: CHE6B15(P)

Core Course XV: ORGANIC CHEMISTRY PRACTICAL

Total Hours: 80; Credits: 4; Hours/Week: 5 (Semester V); Total Marks 100 (Internal 20 & External 80)

CHE6B15(P)	ORGANIC CHEMISTRY PRACTICAL	L	T	P	С	
		0	0	5	4	
Objective (s)	To empower the students to prepare different	ent c	ompour	nds wi	thout	
	compromising yield. Characterisation and analy	ysis c	of differ	rent org	ganic	
	compounds based on functional groups. To develo	p skil	l in sep	aration	and	
	purification of mixtures.					
Course outcom	ne (s)					
CO1	To enable the students to develop analytical skills	in org	ganic qu	ıalitativ	e	
	analysis.					
CO2	To develop talent in organic preparations to ensur	e max	imum y	rield.		
CO3	To apply the concept of melting or boiling points	to che	ck the p	ourity o	f	
	compounds.					
CO4	To analyse and characterise simple organic function	onal g	roups.			
CO5	To analyse individual amino acids from a mixture	using	chrom	atograp	hy.	

SEMESTER VI

Course Code: CHE6B16(P)

Core Course XVI: INORGANIC CHEMISTRY PRACTCAL-II

Total Hours: 80; Credits: 4; Hours/Week: 5; Total Marks 100 (Internal 20 & External 80)

CHE6B16(P)	INORGANIC CHEMISTRY PRACTCAL-II	L	Т	P	С		
		0	0	5	4		
Objective (s)	To develop skill in quantitative analysis using gr	avime	tric and	i	•		
	colorimetric methods.						
Course outcome	e (s)						
CO1	To enable the students to develop analytical skill	To enable the students to develop analytical skills in inorganic					
	quantitative analysis.						
CO2	To understand the principles behind gravimetry	and to	apply i	t in			
	quantitative analysis.						
CO3	To understand the principles behind colorimetry	and to	apply	it in			
	quantitative analysis.						

SEMESTER VI

Course Code: CHE6B17(P)

Core Course XVII: INORGANIC CHEMISTRY PRACTCAL-III

Total Hours: 80; Credits: 4; Hours/Week: 5; Total Marks 100 (Internal 20 & External 80)

CHE6B17(P)	INORGANIC CHEMISTRY PRACTCAL-III	L	T	P	С		
		0	0	5	4		
Objective (s)	To develop skill in quanlitative analysis of inorga	nic co	mpoun	ds.			
Course outcome	(s)						
CO1	To enable the students to develop skills in inorganic quanlitative						
	analysis.						
CO2	To understand the principles behind inorganic mix	ture a	nalysis	and to	,		
	apply it in quanlitative analysis.						
CO3	To analyse systematically mixtures containing two cations and two						
	anions.						

SEMESTER VI

Course Code: CHE6B18(Pr)

Core Course XVIII: PROJECT WORK

Total Hours: 32; Credits: 2; Hours/Week: 2 (Semester V); Total Marks 75 (Internal 15 & External 60)

CHE6B18(Pr)	PROJECT WORK	L	T	P	С	
		0	0	2	2	
Objective (s)	To develop skill in scientific research, critical	thinki	ng and	reason	ing.	
Course outcome	e(s)					
CO1	To understand the scientific methods of research	h pro	ject.			
CO2	To apply the scientific method in life situations.					
CO3	To analyse scientific problems systematically.					

COMPLEMENTARY COURSES

IN

CHEMISTRY

(CBCSSUG 2019)

UNDER CHOICE BASED CREDIT AND SEMESTER SYSTEM

PROGRAMME OUTCOMES & COURSE OUTCOMES

2019 ADMISSION ONWARDS

SEMESTER I

Course Code: CHE1C01

Complementary Course I: GENERAL CHEMISTRY

Total Hours: 32; Credits: 2; Hours/Week: 2; Total Marks 75 (Internal 15 & External 60)

CHE1C01	GENERAL CHEMISTRY	L	T	P	С		
		2	0	0	2		
Objective(s)	To provide the students a thorough knowledge	abou	t the c	hemisti	y of		
	quantitative and qualitative analysis and the theory	ries of	chemi	cal bon	ding.		
	It will also impart the ideas about atomic nucleus and the importance of						
	metals in biological systems.						
Course outco	me (s)						
CO1	To understand and to apply the theories of quantita	ative a	nd qual	litative			
	analysis.						
CO2	To understand the theories of chemical bonding.						
CO3	To appreciate the uses of radioactive isotopes.						
CO4	To understand the importance of metals in biologic	cal sys	stems.				

SEMESTER II

Course Code: CHE2C02

Complementary Course II: PHYSICAL CHEMISTRY

Total Hours: 32; Credits: 2; Hours/Week: 2; Total Marks 75 (Internal 15 & External 60)

CHE2C02	PHYSICAL CHEMISTRY	L	T	P	С		
		2	0	0	2		
Objective(s)	To provide the students a thorough knowledge about differen						
	terminologies in thermodynamics and the continuity between different						
	states of matter. To impart an idea about the basic principles of						
	electrochemistry.						
Course outcome (s)							
CO1	To understand the importance of free energy in defining spontaneity.						
CO2	To realise the theories of different states of matter and their implication.						
CO3	To understand the basic principles of electrochemistry.						

SEMESTER III

Course Code: CHE3C03

Complementary Course III: ORGANIC CHEMISTRY

Total Hours: 48; Credits: 2; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE3C03	ORGANIC CHEMISTRY	L	T	P	С	
		3	0	0	2	
Objective(s)	To provide the students a thorough knowledge about basic theory and					
	concepts of organic chemistry.					
Course outcome (s)						
CO1	To understand the basic concepts involved in reaction intermediates.					

CO2	To realise the importance of optical activity and chirality.
CO3	To appreciate the importance of functional groups and aromatic stability.
CO4	To understand the basic structure and importance of carbohydrates, nucleic
	acids, alkaloids and terpenes.

SEMESTER IV

Course Code: CHE4C04

Complementary Course IV: PHYSICAL AND APPLIED CHEMISTRY

Total Hours: 48; Credits: 2; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

CHE 4004 DINVOICAL AND ADDITION CHEMICEDAY I TO DECIDE AND ADDITION OF THE ADD							
CHE4C04	PHYSICAL AND APPLIED CHEMISTRY	L	1	P	C		
		3	0	0	2		
Objective (s)	To provide the students a thorough knowledge about colloidal chemistry,						
	nanochemistry and the importance of chemistry in daily life. It also						
	provides a basic idea related to separation and spectral techniques. It also						
	imparts the idea of green processes with special emphasis on environment.						
Course outcome (s)							
CO1	To understand the basic concepts behind colloidal state and nanochemistry.						
CO2	To understand the importance of green chemistry and pollution prevention.						
CO3	To appreciate the importance of different separation methods and spectral						
	techniques.						
CO4	To understand the extent of chemistry in daily life	•					

SEMESTER IV

Course Code: CHE4C05(P)

Complementary Course V: CHEMISTRY PRACTICAL

Total Hours: 128; Credits: 4; Hours/Week: 2 (I, II, III & IV Semesters); Total Marks 100 (Internal 20 & External 80)

CHE4C05(P)	CHEMISTRY PRACTICAL	L	T	P	С	
		0	0	2	4	
Objective (s)	To develop proficiency in quantitative and qualitative analysis and					
	expertise in organic preparation and determination of physical					
	constants.					
Course outcome (s)						
CO1	To understand the basic concepts of inter group separation.					
CO2	To enable the students to develop analytical and preparation skills.					

OPEN COURSES IN CHEMISTRY

(CBCSSUG 2019)

UNDER CHOICE BASED CREDIT AND SEMESTER SYSTEM

PROGRAMME OUTCOMES & COURSE OUTCOMES 2019 ADMISSION ONWARDS

OPEN COURSE STRUCTURE

(FOR STUDENTS OTHER THAN B.Sc. CHEMISTRY) Total Credits: 3 (Internal 20%; External 80%)

			Hrs/	Total	_
Semester	Code No	Course Title	Week	Hrs	Marks
	CHE5D01	Open Course 1: Environmental Chemistry			
V	CHE5D02	Open Course 2: Chemistry in Daily Life	3	48	75
	CHE5D03	Open Course 3: Food Science and Medicinal Chemistry			

SEMESTER V

Course Code: CHE5D01

Open Course 1: ENVIRONMENTAL CHEMISTRY

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

Course outcomes

At the end of the course, students will be able to:

- CO 1: Recall the technical/scientific terms involved in pollution.
- CO 2: Understand the causes and effects of air pollution.
- CO 3: Understand the sources, types and effects of water pollution.
- CO 4: Describe water quality parameters.
- CO 5: Know soil, noise, thermal and radioactive pollutions and their effects.
- CO 6: Study various pollution control measures.
- CO 7: Understand the basics of green chemistry.

SEMESTER V

Course Code: CHE5D02

Open Course 2: CHEMISTRY IN DAILY LIFE

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

Course outcomes

At the end of the course, students will be able to:

- CO 1: Understand the basics of polymer chemistry.
- CO 2: Explain the functions of biomolecules, vitamins, enzymes, hormones and nucleic acid.
- CO 3: Describe food additives and food habits.
- CO 4: Explain the uses of pesticides and fertilizers and their impacts on the environment.
- CO 5: Understand advantages and disadvantages of cleansing agents and cosmetics.
- CO 6: Recognize the common classes of drugs in pharmaceutical industry and their application.
- CO 7: Understand the basic concepts and processes in petroleum industry.

SEMESTER V

Course Code: CHE5D03

Open Course 3: FOOD SCIENCE AND MEDICINAL CHEMISTRY

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

Course outcomes

At the end of the course, students will be able to:

- CO 1: Understand food adulteration and preservation methods.
- CO 2: Understand food additives.
- CO 3: Compare modern food with natural food.
- CO 4: Describe the harmful effects of alcohol and modern food habits.
- CO 5: Exhibit a broad and coherent body of knowledge on the biomolecules, vitamins, enzymes, hormones and nucleic acids.
- CO 6: Recognize the uses of Indian medicinal plants and plant extracts.
- CO 7: Recall the chemical, generic and trade names of drugs and their uses.
- CO 8: Describe the treatment methods used in medical field.
- CO 9: Illustrate first aids and the safety steps to be taken for common illnesses.