MSc MATHEMATICS

PROGRAMME OUTCOMES

Upon completing the M. Sc degree in the field of Mathematics, students have/capable of:

- A solid understanding of graduate level algebra, analysis and topology.
- Using their mathematical knowledge to analyze certain problems in day to day life .
- Identifying unsolved yet relevant problems in a specific field.
- Undertaking original research on a particular topic.
- Communicate mathematics accurately and effectively in both written and oral form.
- Conducting scholarly or professional activities in an ethical manner.

COURSE OUTCOMES

MTH1C01: ALGEBRA - I

Course Outcomes: Upon the successful completion of the course students will:

- Learn factor group computation.
- Understand the notion of group action on a set.
- Understand the notion of free groups.
- Understand the concepts rings of polynomials and ideals.
- Learn basic properties of field extensions

MTH1C02: LINEAR ALGEBRA

Course Outcomes: Upon the successful completion of the course students will:

- Learn basic properties of vector spaces
- Understand the relation between linear transformations and matrices
- Understand the concept of diagonalizable and triangulable operators and various fundamental results of these operators
- Understand Primary decomposition Theorem.
- Learn basic properties inner product spaces

MTH1C03: REAL ANALYSIS I

Course Outcomes: Upon the successful completion of the course students will:

- Learn the topology of the real line
- Understand the notions of Continuity, Differentiation and Integration of real functions.
- Learn Uniform convergence of sequence of functions, equicontinuity of family of functions, and Weierstrass theorems.

MTH1C04: DISCRETE MATHEMATICS

Course Outcomes: Upon the successful completion of the course students will:

• Understand the fundamentals of Graphs

- Learn the structure of graphs and familiarize the basic concepts used to analyse different problems in different branches such as chemistry, computer science etc.
- Acquire a basic knowledge of formal languages, grammars and automata.
- Learn the equivalence of deterministic and non deterministic finite accepters.
- Learn the concepts of partial order relation and total order relation.
- Acquire knowledge of Boolean algebras and Boolean function and understand how these concepts arise in certain real life problems.

MTH1CO5: NUMBER THEORY

Course Outcomes: Upon the successful completion of the course students will:

- Be able to effectively express the concepts and results of number theory.
- Learn basic theory of arithmetical functions and Dirichlet multiplication, averages of some arithmetical functions.
- Understand distribution of prime numbers and prime number theorem.
- Learn the concept of quadratic residue and Quadratic reciprocity laws.
- Get a basic knowledge in Cryptography

MTH2C06: ALGEBRA II

Course Outcomes: Upon the successful completion of the course students will:

- Be able to apply Sylow's theorem effectively in various contexts.
- Learn automorphisms of fields.
- Get a basic knowledge in Galois Theory.
- Learn how to apply Galois Theory in various contexts.

MTH2CO7: REAL ANALYSIS II

- Learn why and for what the theory of measure was introduced
- Learn the concept of measures and measurable functions
- Learn Lebesgue integration and its various properties
- Learn how to generalize the concept of measure theory.

• Learn that a measure may take negative values.

MTH2C08: TOPOLOGY

Course Outcomes: Upon the successful completion of the course students will:

- Be proficient in abstract notion of a toplogical space, where continuous function are defined in terms of open sets not in the traditional ε δ definition used in analysis).
- Realize Intermediate value theorem is a statement about connectedness, Bolzano weierstrass theorem is a theorem about compactness and so on.
- Learn the concept of quotient topology.
- Learn five properties such as T0, T1, T2, T3 and T4 of a topological space X which express how rich the open sets is. More precisely, each of them tells us how tightly a closed subset can be wrapped in an open set.

MTH2C09: ODE AND CALCULUS OF VARIATIONS

Course Outcomes: Upon the successful completion of the course students will:

- Learn the existence of uniqueness of solutions for a system of first order ODEs.
- Learn many solution techniques such as separation of variables, variation of parameter power series method, Frobeniious method etc.
- Learn method of solving system of first order differential calculus equations.
- Get an idea of how to analyze the behavior of solutions such as stability, asymptotic stability etc.
- Get a basic knowledge of Calculus of variation.

MTH2C10: OPERATIONS RESEARCH

- Learn graphical method and the simplex algorithm for solving a linear programming problem.
- Learn more optimization techniques for solving the linear programming modelstransportation problem and integer programming problem.
- Learn optimization techniques for solving some network related problems.
- Learn sensitivity analysis and parametric programming, which describes how various changes in the problem affect its solution.

MTH2A02: TECHNICAL WRITING WITH LATEX (PCC)

Course Outcomes: Upon the successful completion of the course students will learn

- 1. Installation of the software LATEX
- 2. Understanding LATEX compilation
- 3. Basic Syntex, Writing equations, Matrix, Tables
- 4. Page Layout: Titles, Abstract, Chapters, Sections, Equation references, citation.
- 5. List making environments
- 6. Table of contents, Generating new commands
- 7. Figure handling, numbering, List of figures, List of tables, Generating bibliography and index 8. Beamer presentation
- 9. Pstricks: drawing simple pictures, Function plotting, drawing pictures with nodes
- 10. Tikz:drawing simple pictures, Function plotting, drawing pictures with nodes

MTH2A03: PROGRAMMING WITH SCILAB (PCC)

Course Outcomes: Upon the successful completion of the course students will Learn

- 1. Installation of the software Scilab.
- 2. Basic syntax, Mathematical Operators, Predefined constants, Built in functions.
- 3. Complex numbers, Polynomials, Vectors, Matrix. Handling these data structures using built infunctions
- 4. Programming
- 5. Installation of additional packages
- 6. Graphics handling ,Some Applications different fields in mathematics.

MTH2A04: SCIENTIFIC PROGRAMMING WITH PYTHON(PCC)

- 1. Basic symbols, Operators, and Functions
- 2. Writing a python script

- 3. To find roots of Some Nonlinear Equations
- 4.To find the Direct and iterative Solution of Linear Equations
- 5. Numerical Differentiation and Integration
- 6. Numerical Solution of Ordinary Differential Equations

MTH3C11: MULTIVARIABLE CALCULUS AND GEOMETRY

Course Outcomes: Upon the successful completion of the course students will:

- Be proficient in differentiation of functions of several variables.
- Understand curves in plane and in space.
- Get a deep knowledge of Curvature, torsion, Serret-Frenet formulae
- Learn Fundamental theorem of curves in plane and space.
- Learn the concept of Surfaces in three dimension, smooth surfaces, surfaces of revolution
- Learn explicitly tangent and normal to the surfaces.
- Get a thorough understanding of oriented surfaces, first and second fundamental forms surfaces, gaussian curvature and geodesic curvature and so on.

MTH3C12: COMPLEX ANALYSIS

Course Outcomes: Upon the successful completion of the course students will:

- Learn the concept of (complex) differentiation and integration of functions defined on the complex plane and their properties.
- Be thorough in power series representation of analytic functions, different versions of Cauchy's Theorem.
- Get an idea of singularities of analytic functions and their classifications.
- Learn different versions of maximum modulus theorem.

MTH3C13: FUNCTIONAL ANALYSIS

Course Outcomes: Upon the successful completion of the course students will:

• Learn the concept of normed linear spaces and various properties operators defined on them.

MTH3C14: PDE AND INTEGRAL EQUATIONS

Course Outcomes: Upon the successful completion of the course students will:

- Learn a technique to solve first order PDE and analyse the solution to get information about the parameters involved in the model.
- Learn explicit representations of solutions of three important classes of PDE Heat equations Laplace equation and wave equation for initial value problems.
- Get an idea about Integral equations
- Learn the relation between Integral and differential Equations

MTH3E02: CRYPTOGRAPHY

Course Outcomes: Upon the successful completion of the course students will learn to

- Understand the fundamentals of cryptography and cryptanalysis.
- Acquire a knowledge of Claude Shanon's ideas to cryptography, including the concepts of perfect secrecy and the use of information theory to cryptography.
- Learn to use substitution -permutation networks as a mathematical model to introduce many of the concepts of modern block cipher design and analysis including differential and linear cryptoanalysis.
- Familiarize different cryptographic hash functions and their application to the construction of message authentication codes.

MTH3E03: MEASURE AND INTEGRATION

- Learn how a measure will be helpful to generalize the concept of an integral.
- Learn how a smallest sigma algebra containing all open sets be constructed on a topological space which ensures the measurability of all continuous function and how a measure called Borel measure is defined on this sigma algebra which ensures the integrability of a huge class of continuous functions.
- Understand the regularity properties Borel measures.
- Realize a measure may take real values even complex values.
- Learn to characterize bounded linear functionals on Lp .
- Learn product measure and their completion.

MTH4C15 ADVANCED FUNCTIONAL ANALYSIS

Course Outcomes: Upon the successful completion of the course students will:

- Understand the concept of the spectrum of bounded operators and how much it will be helpful in solving certain differential equations.
- Get an idea about different types of convergence of sequences in normed spaces and their relations.
- Understand that there is a nice class of operators called compact linear operators stronger than continuous linear operators on a normed space and understand the behavior of spectrum of such operators.
- Understand that there is a surjective isometry between a Hilbert space and its dual.

MTH4E07: ALGEBRAIC TOPOLOGY

Course Outcomes: Upon the successful completion of the course students will:

- Learn how basic geometric structures may be studied by transforming them into algebraic questions.
- Learn basics of homology theory and apply it to get a generalization of Euler's formula to a general polyhedra.
- Learn to associate various groups namely homology groups of various dimensions and the homotopy group- the fundamental group to every topological space.
- Learn that two objects that can be deformed into one another will have the same homology group.
- Learn Brouwer fixed point theorem and related results.

MTH4E08: COMMUTATIVE ALGEBRA

Course Outcomes: Upon the successful completion of the course students will:

- Learn basic properties of commutative rings, ideals and modules over commutative rings,
- Learn uniqueness theorem for a decomposable ideal.
- Learn integrally closed domain and valuation ring.
- Understand the basic theory of Noetherian and Artin Rings

MTH4E09: DIFFERENTIAL GEOMETRY

- Understand how calculus of several variables can be used to develop the geometry of ndimensional oriented n- surface in \mathbb{R}^{n+1} .
- Understand locally n- surfaces and parametrized n- surfaces are the same.
- Develop a knowledge of the Gauss and Weingarten maps and apply them to apply them to describe various properties of surfaces.

MTH4E11: GRAPH THEORY

Course Outcomes: Upon the successful completion of the course students will:

- Understand the trees, Euler tour and Hamilton cycle and some of their applications
- Learn Matchings and Coverings in Bipartite Graphs.
- Understand directed graph planar graph and their properties.

MTH4E12 REPRESENTATION THEORY

Course Outcomes: Upon the successful completion of the course students will:

- Acquire the basics of classical representation theory of finite groups.
- Understand character theory and orthogonal relations.
- Acquire a knowledge of the theory of induced characters.

MTH4E13: WAVELET THEORY

- Learn the concept of discrete Fourier Transforms and its basic properties.
- Learn how to construct Wavelets on $\mathbb{Z}N$ and \mathbb{Z} .
- ullet Learn Wavelets on $\mathbb R$ and construction of MRA.